NOTE

On the Delone Triangulation Numbers

Piotr Mankiewicz ${ }^{1}$
Institute of Mathematics, PAN, 00-950, Warsaw, Sniadeckich 8, Poland
E-mail: piotr@impan.gov.pl
and
Carsten Schütt ${ }^{2}$
Mathematisches Seminar, Christian Albrechts Univesität, 24098 Kiel, Germany
E-mail: schuett@math.uni.kiel.de
Communicated by Paul Nevai and Amos Ron

Received October 18, 2000; accepted in revised form January 5, 2001;
published online May 17, 2001

$$
\begin{aligned}
& \text { "Almost exact" estimates for the Delone triangulation numbers are given. In } \\
& \text { particular } \\
& \qquad \lim _{n \rightarrow \infty} \frac{\operatorname{del}_{n-1}}{n}=\frac{1}{2 \pi e}=0.0585498 \ldots
\end{aligned}
$$

(C) 2001 Academic Press

By B_{2}^{n} we denote the Euclidean ball in \mathbb{R}^{n}. Recall that the symmetric difference metric for convex bodies K and C is the volume of the difference of K and C

$$
\mathrm{d}_{S}(K, C)=\operatorname{vol}_{n}(K \triangle C) .
$$

McClure and Vitale, [McVi], in dimension 2 and Gruber, [Gr], in arbitrary dimension obtained an asymptotic formula for convex bodies K

[^0]${ }^{2}$ Partially supported by the Erwin-Schrödinger-Institute in Vienna.
in \mathbb{R}^{n} with a C^{2}-boundary with everywhere positive curvature. Namely, for such bodies
$$
\lim _{N \rightarrow \infty} N^{2 /(n-1)} \inf \left\{\mathrm{d}_{S}\left(K, P_{N}\right) \mid P_{N} \subset K, P_{N} \text { is a polytope with } N \text { vertices }\right\}
$$
is equal to
$$
\frac{1}{2} \operatorname{del}_{n-1}\left(\int_{\partial K} \kappa(x)^{1 /(n+1)} d \mu(x)\right)^{(n+1) /(n-1)},
$$
where μ is the surface measure, κ the Gauss-curvature, and del_{n-1} is a constant connected with the Delone triangulations. Thus
$$
\operatorname{del}_{n-1}=\lim _{N \rightarrow \infty} \frac{\binom{2 \inf \left\{\mathrm{~d}_{S}\left(K, P_{N}\right) \mid P_{N} \subset K,\right.}{\left.P_{N} \text { is a polytope with } N \text { vertices }\right\}}}{\left(\int_{\partial K} \kappa(x)^{1 /(n+1)} d \mu(x)\right)^{(n+1) /(n-1)} N^{-2 /(n-1)}} .
$$

In particular, for $K=B_{2}^{n}$, we get

$$
\operatorname{del}_{n-1}=\lim _{N \rightarrow \infty} \frac{\binom{2 \inf \left\{\mathrm{~d}_{S}\left(B_{2}^{n}, P_{n}\right) \mid P_{N} \subset B_{2}^{n}\right.}{\left.P_{N} \text { is a polytope with } N \text { vertices }\right\}}}{\left(\operatorname{vol}_{n-1}\left(\partial B_{2}^{n}\right)\right)^{(n+1) /(n-1)} N^{-2 /(n-1)}} .
$$

It was shown in [GRS] that there are constants c_{1} and c_{2} such that

$$
c_{1} n \leqslant \operatorname{del}_{n} \leqslant c_{2} n .
$$

This result was refined in [MS]:

$$
\frac{n-1}{n+1} \operatorname{vol}_{n-1}\left(B_{2}^{n-1}\right)^{-2 /(n-1)} \leqslant \operatorname{del}_{n-1} \leqslant 2^{0.802} \operatorname{vol}_{n-1}\left(\partial B_{2}^{n}\right)^{-2 /(n-1)}
$$

Let K be a convex body. We consider random polytopes with vertices (randomly) chosen from the boundary of the body K. The expected volume of such a random polytope is defined by

$$
\mathbb{E}(\partial K, N)=\int_{\partial K} \cdots \int_{\partial K} \operatorname{vol}_{n}\left(\left[x_{1}, \ldots, x_{N}\right]\right) d \mathbb{P}\left(x_{1}\right) \cdots d \mathbb{P}\left(x_{N}\right),
$$

where \mathbb{P} denotes the normalized surface measure on the boundary of K and [x_{1}, \ldots, x_{N}] denotes the convex hull of the points x_{1}, \ldots, x_{N}.

Proposition 1 (J. Müller, [Mü], Theorem 2). In the above notation, for $K=B_{2}^{n}$ one has

$$
\begin{aligned}
\lim _{N \rightarrow \infty} & \frac{\operatorname{vol}_{n}\left(B_{2}^{n}\right)-\mathbb{E}\left(\partial B_{2}^{n}, N\right)}{N^{-2 /(n-1)}} \\
& =\frac{\operatorname{vol}_{n-2}\left(\partial B_{2}^{n-1}\right)}{2(n+1)!}\left(\frac{(n-1) \operatorname{vol}_{n-1}\left(\partial B_{2}^{n}\right)}{\operatorname{vol}_{n-2}\left(\partial B_{2}^{n-1}\right)}\right)^{(n+1) /(n-2)} \Gamma\left(n+1+\frac{2}{n-1}\right)
\end{aligned}
$$

The following theorem provides "almost exact" estimates for the Delone triangulation numbers

Theorem 2. For every $n \in \mathbb{N}$ with $n \geqslant 2$

$$
\begin{aligned}
& \frac{n-1}{n+1} \operatorname{vol}_{n-1}\left(B_{2}^{n-1}\right)^{-2 /(n-1)} \\
& \quad \leqslant \operatorname{del}_{n-1} \leqslant \frac{n-1}{n+1} \operatorname{vol}_{n-1}\left(B_{2}^{n-1}\right)^{-2 /(n-1)} \frac{\Gamma\left(n+1+\frac{2}{n-1}\right)}{n!} .
\end{aligned}
$$

Consequently there is a numerical constant $c>0$ such that

$$
\begin{aligned}
& \frac{n-1}{n+1} \operatorname{vol}_{n-1}\left(B_{2}^{n-1}\right)^{-2 /(n-1)} \\
& \quad \leqslant \operatorname{del}_{n-1} \leqslant\left(1+\frac{c \ln n}{n}\right) \frac{n-1}{n+1} \operatorname{vol}_{n-1}\left(B_{2}^{n-1}\right)^{-2 /(n-1)} .
\end{aligned}
$$

In particular,

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{del}_{n-1}}{n}=\frac{1}{2 \pi e} .
$$

Proof. The left-hand inequality was shown in [MS], Theorem 3. To prove the right hand side inequality note that

$$
\begin{aligned}
\operatorname{del}_{n-1} & =\lim _{N \rightarrow \infty} \frac{\binom{2 \inf \left\{\mathrm{~d}_{S}\left(B_{2}^{n}, P_{N}\right) \mid P_{N} \subset B_{2}^{n},\right.}{\left.P_{N} \text { is a polytope with } N \text { vertices }\right\}}}{\left(\operatorname{vol}_{n-1}\left(\partial B_{2}^{n}\right)\right)^{(n+1) /(n-1)} N^{-2 /(n-1)}} \\
& \leqslant \lim _{N \rightarrow \infty} \frac{2\left(\operatorname{vol}_{n}\left(B_{2}^{n}\right)-\mathbb{E}\left(\partial B_{2}^{n}, N\right)\right)}{\left(\operatorname{vol}_{n-1}\left(\partial B_{2}^{n}\right)\right)^{(n+1) /(n-1)} N^{-2 /(n-1)}} .
\end{aligned}
$$

By Proposition 1 we have

$$
\begin{aligned}
\operatorname{del}_{n-1} & \leqslant \frac{\operatorname{vol}_{n-2}\left(\partial B_{2}^{n-1}\right)}{(n+1)!}\left(\frac{n-1}{\operatorname{vol}_{n-2}\left(\partial B_{2}^{n-1}\right)}\right)^{(n+1) /(n-1)} \Gamma\left(n+1+\frac{2}{n-1}\right) \\
& =\frac{n-1}{n+1}\left(\operatorname{vol}_{n-2}\left(B_{2}^{n-1}\right)\right)^{-2 /(n-1)} \frac{\Gamma\left(n+1+\frac{2}{n-1}\right)}{n!} .
\end{aligned}
$$

By an elementary calculation

$$
\frac{\Gamma\left(n+1+\frac{2}{n-1}\right)}{n!} \leqslant 1+\frac{c \ln (n+2)}{n} .
$$

It remains to show that

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{del}_{n-1}}{n}=\frac{1}{2 \pi e} .
$$

This follows from

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{vol}_{n-1}\left(B_{2}^{n-1}\right)^{-2 /(n-1)}}{n}=\frac{1}{2 \pi e}
$$

REFERENCES

[GRS] Y. Gordon, S. Reisner, and C. Schütt, Umbrellas and polytopal approximation of the Euclidean ball, J. Approx. Theory 90 (1997), 9-22. Erratum, J. Approx. Theory 95 (1998), 331.
[Gr] P. M. Gruber, Asymptotic estimates for best and stepwise approximation of convex bodies II, Forum Math. 5 (1993), 521-538.
[MS] P. Mankiewicz and C. Schütt, A simple proof of an estimate for the approximation of the Euclidean ball and the Delone triangulation numbers, J. Approx. Theory 107 (2000), 268-280.
[McVi] McClure and R. Vitale, Polygonal approximation of plane convex bodies, J. Math. Anal. Appl. 51 (1975), 326-358.
[Mü] J. S. Müller, Approximation of the ball by random polytopes, J. Approx. Theory 63 (1990), 198-209.

[^0]: ${ }^{1}$ Partially supported by the KBN Grant 2 PO3A 01319.

